Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.038
Filtrar
1.
Nat Commun ; 15(1): 3246, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622137

RESUMO

Simultaneously quantifying mitochondrial Cu+ and Cu2+ levels is crucial for evaluating the molecular mechanisms of copper accumulation-involved pathological processes. Here, a series of molecules containing various diacetylene derivatives as Raman reporters are designed and synthesized, and the alkyne-tagged SERS probe is created for determination Cu+ and Cu2+ with high selectivity and sensitivity. The developed SERS probe generates well-separated distinguishable Raman fingerprint peaks with built-in corrections in the cellular silent region, resulting in accurate quantification of Cu+ and Cu2+. The present probe demonstrates high tempo-spatial resolution for real-time imaging and simultaneously quantifying mitochondrial Cu+ and Cu2+ with long-term stability benefiting from the probe assembly with designed Au-C≡C groups. Using this powerful tool, it is found that mitochondrial Cu+ and Cu2+ increase during ischemia are associated with breakdown of proteins containing copper as well as conversion of Cu+ and Cu2+. Meanwhile, we observe that parts of Cu+ and Cu2+ are transported out of neurons by ATPase. More importantly, cuproptosis in neurons is found including the oxidative stress process caused by the conversion of Cu+ to Cu2+, which dominates at the early stage (<9 h), and subsequent proteotoxic stress. Both oxidative and proteotoxic stresses contribute to neuronal death.


Assuntos
Alcinos , Cobre , Análise Espectral Raman/métodos , Ouro , Transporte Biológico
2.
Anal Chem ; 96(15): 5887-5896, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567874

RESUMO

Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.


Assuntos
Biomimética , Polímeros de Fluorcarboneto , Polivinil , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Microcistinas/análise , Toxinas Marinhas
3.
Anal Chem ; 96(15): 5824-5831, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573047

RESUMO

Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This advancement demonstrates the effectiveness of this method in microbial subspecies identification, offering a promising solution for microbiology diagnosis.


Assuntos
Escherichia coli , Pinças Ópticas , Análise Espectral Raman/métodos
4.
Langmuir ; 40(15): 7962-7973, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577710

RESUMO

During the manufacturing process of liposome formulations, it is considered difficult to evaluate their physicochemical properties and biological profiles due to the complexity of their structure and manufacturing process. Conventional quality evaluation is labor-intensive and time-consuming; therefore, there was a need to introduce a method that could perform in-line, real-time evaluation during the manufacturing process. In this study, Raman spectroscopy was used to monitor in real time the encapsulation of drugs into liposomes and the drug release, which are particularly important quality evaluation items. Furthermore, Raman spectroscopy combined with partial least-squares (PLS) analysis was used for quantitative drug evaluation to assess consistency with results from UV-visible spectrophotometry (UV), a common quantification method. The prepared various ciprofloxacin (CPFX) liposomes were placed in cellulose tubes, and a probe-type Raman spectrophotometer was used to monitor drug encapsulation, the removal of unencapsulated drug, and drug release characteristics in real time using a dialysis method. In the Raman spectra of the liposomes prepared by remote loading, the intensities of the CPFX-derived peaks increased upon drug encapsulation and showed a slight decrease upon removal of the unencapsulated drug. Furthermore, the peak intensity decreased more gradually during the drug release. In all Raman monitoring experiments, the discrepancy between quantified values of CPFX concentration in liposomes, as measured by Raman spectroscopy combined with partial least-squares (PLS) analysis, and those obtained through ultraviolet (UV) spectrophotometry was within 6.7%. The results revealed that the quantitative evaluation of drugs using a combination of Raman spectroscopy and PLS analysis was as accurate as the evaluation using UV spectrophotometry, which was used for comparison. These results indicate the promising potential of Raman spectroscopy as an innovative method for the quality evaluation of liposomal formulations.


Assuntos
Celulose , Lipossomos , Composição de Medicamentos/métodos , Análise Espectral Raman/métodos
5.
Anal Chem ; 96(15): 5968-5975, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577912

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for highly sensitive qualitative and quantitative analyses of trace targets. However, sensitive SERS detection can only be facilitated with a suitable sample pretreatment in fields related to trace amounts for food safety and clinical diagnosis. Currently, the sample pretreatment for SERS detection is normally borrowed and improved from the ones in the lab, which yields a high recovery but is tedious and time-consuming. Rapid detection of trace targets in a complex environment is still a considerable issue for SERS detection. Herein, we proposed a liquid-liquid extraction method coupled with a back-extraction method for sample pretreatment based on the pH-sensitive reversible phase transition of the weak organic acids and bases, where the lowest detectable concentrations were identical before and after the pretreatment process. The sensitive (µg L-1 level) and rapid (within 5 min) SERS detection of either koumine, a weak base, or celastrol, a weak acid, was demonstrated in different drinking water samples and beverages. Furthermore, target generality was demonstrated for a variety of weak acids and bases (2 < pKa < 12), and the hydrophilicity/hydrophobicity of the target determines the pretreatment efficiency. Therefore, the LLE-BE coupled SERS was developed as an easy, rapid, and low-cost tool for the trace detection of the two types of targets in simple matrices, which paved the way toward trace targets in complex matrices.


Assuntos
Água Potável , Análise Espectral Raman , Análise Espectral Raman/métodos , Bebidas , Extração Líquido-Líquido
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124178, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565050

RESUMO

The development of a highly sensitive, synthetically simple and economical SERS substrate is technically very important. A fast, economical, sensitive and reproducible CuNPs@AgNPs@ Porous silicon Bragg reflector (PSB) SERS substrate was prepared by electrochemical etching and in situ reduction method. The developed CuNPs@AgNPs@PSB has a large specific surface area and abundant "hot spot" region, which makes the SERS performance excellent. Meanwhile, the successful synthesis of CuNPs@AgNPs can not only modulate the plasmon resonance properties of nanoparticles, but also effectively prolong the time stability of Cu nanoparticles. The basic performance of the substrate was evaluated using rhodamine 6G (R6G). (Detection limit reached 10-15 M, R2 = 0.9882, RSD = 5.3 %) The detection limit of Forchlorfenuron was 10 µg/L. The standard curve with a regression coefficient of 0.979 was established in the low concentration range of 10 µg/L -100 µg/L. This indicates that the prepared substrates can accomplish the detection of pesticide residues in the low concentration range. The prepared high-performance and high-sensitivity SERS substrate have a very promising application in detection technology.


Assuntos
Nanopartículas Metálicas , Compostos de Fenilureia , Piridinas , Rodaminas , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Prata/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124189, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569385

RESUMO

Early detection and postoperative assessment are crucial for improving overall survival among lung cancer patients. Here, we report a non-invasive technique that integrates Raman spectroscopy with machine learning for the detection of lung cancer. The study encompassed 88 postoperative lung cancer patients, 73 non-surgical lung cancer patients, and 68 healthy subjects. The primary aim was to explore variations in serum metabolism across these cohorts. Comparative analysis of average Raman spectra was conducted, while principal component analysis was employed for data visualization. Subsequently, the augmented dataset was used to train convolutional neural networks (CNN) and Resnet models, leading to the development of a diagnostic framework. The CNN model exhibited superior performance, as verified by the receiver operating characteristic curve. Notably, postoperative patients demonstrated an increased likelihood of recurrence, emphasizing the crucial need for continuous postoperative monitoring. In summary, the integration of Raman spectroscopy with CNN-based classification shows potential for early detection and postoperative assessment of lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Redes Neurais de Computação , Curva ROC , Análise Espectral Raman/métodos , Análise de Componente Principal
8.
Nano Lett ; 24(14): 4233-4240, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557069

RESUMO

This study represents the synthesis of a novel class of nanoparticles denoted as annular Au nanotrenches (AANTs). AANTs are engineered to possess embedded, narrow circular nanogaps with dimensions of approximately 1 nm, facilitating near-field focusing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via a surface-enhanced Raman scattering (SERS)-based immunoassay. Notably, AANTs exhibited an exceedingly low limit of detection (LOD) of 1 fg/mL for SARS-CoV-2 spike glycoproteins, surpassing the commercially available enzyme-linked immunosorbent assay (ELISA) by 6 orders of magnitude (1 ng/mL from ELISA). To assess the real-world applicability, a study was conducted on 50 clinical samples using an SERS-based immunoassay with AANTs. The results revealed a sensitivity of 96% and a selectivity of 100%, demonstrating the significantly enhanced sensing capabilities of the proposed approach in comparison to ELISA and commercial lateral flow assay kits.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro , COVID-19/diagnóstico , Imunoensaio/métodos , Análise Espectral Raman/métodos
9.
J Biomed Opt ; 29(Suppl 2): S22703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584965

RESUMO

Significance: Raman spectroscopy has been used as a powerful tool for chemical analysis, enabling the noninvasive acquisition of molecular fingerprints from various samples. Raman spectroscopy has proven to be valuable in numerous fields, including pharmaceutical, materials science, and biomedicine. Active research and development efforts are currently underway to bring this analytical instrument into the field, enabling in situ Raman measurements for a wider range of applications. Dispersive Raman spectroscopy using a fixed, narrowband source is a common method for acquiring Raman spectra. However, dispersive Raman spectroscopy requires a bulky spectrometer, which limits its field applicability. Therefore, there has been a tremendous need to develop a portable and sensitive Raman system. Aim: We developed a compact swept-source Raman (SS-Raman) spectroscopy system and proposed a signal processing method to mitigate hardware limitations. We demonstrated the capabilities of the SS-Raman spectroscopy by acquiring Raman spectra from both chemical and biological samples. These spectra were then compared with Raman spectra obtained using a conventional dispersive Raman spectroscopy system. Approach: The SS-Raman spectroscopy system used a wavelength-swept source laser (822 to 842 nm), a bandpass filter with a bandwidth of 1.5 nm, and a low-noise silicon photoreceiver. Raman spectra were acquired from various chemical samples, including phenylalanine, hydroxyapatite, glucose, and acetaminophen. A comparative analysis with the conventional dispersive Raman spectroscopy was conducted by calculating the correlation coefficients between the spectra from the SS-Raman spectroscopy and those from the conventional system. Furthermore, Raman mapping was obtained from cross-sections of swine tissue, demonstrating the applicability of the SS-Raman spectroscopy in biological samples. Results: We developed a compact SS-Raman system and validated its performance by acquiring Raman spectra from both chemical and biological materials. Our straightforward signal processing method enhanced the quality of the Raman spectra without incurring high costs. Raman spectra in the range of 900 to 1200 cm-1 were observed for phenylalanine, hydroxyapatite, glucose, and acetaminophen. The results were validated with correlation coefficients of 0.88, 0.84, 0.87, and 0.73, respectively, compared with those obtained from dispersive Raman spectroscopy. Furthermore, we performed scans across the cross-section of swine tissue to generate a biological tissue mapping plot, providing information about the composition of swine tissue. Conclusions: We demonstrate the capabilities of the proposed compact SS-Raman spectroscopy system by obtaining Raman spectra of chemical and biological materials, utilizing straightforward signal processing. We anticipate that the SS-Raman spectroscopy will be utilized in various fields, including biomedical and chemical applications.


Assuntos
Acetaminofen , Análise Espectral Raman , Suínos , Animais , Análise Espectral Raman/métodos , Glucose , Fenilalanina , Hidroxiapatitas
10.
PLoS One ; 19(4): e0302017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603731

RESUMO

In Neurofibromatosis type 1 (NF1), peripheral nerve sheaths tumors are common, with cutaneous neurofibromas resulting in significant aesthetic, painful and functional problems requiring surgical removal. To date, determination of adequate surgical resection margins-complete tumor removal while attempting to preserve viable tissue-remains largely subjective. Thus, residual tumor extension beyond surgical margins or recurrence of the disease may frequently be observed. Here, we introduce Shifted-Excitation Raman Spectroscopy in combination with deep neural networks for the future perspective of objective, real-time diagnosis, and guided surgical ablation. The obtained results are validated through established histological methods. In this study, we evaluated the discrimination between cutaneous neurofibroma (n = 9) and adjacent physiological tissues (n = 25) in 34 surgical pathological specimens ex vivo at a total of 82 distinct measurement loci. Based on a convolutional neural network (U-Net), the mean raw Raman spectra (n = 8,200) were processed and refined, and afterwards the spectral peaks were assigned to their respective molecular origin. Principal component and linear discriminant analysis was used to discriminate cutaneous neurofibromas from physiological tissues with a sensitivity of 100%, specificity of 97.3%, and overall classification accuracy of 97.6%. The results enable the presented optical, non-invasive technique in combination with artificial intelligence as a promising candidate to ameliorate both, diagnosis and treatment of patients affected by cutaneous neurofibroma and NF1.


Assuntos
Neurofibroma , Neurofibromatose 1 , Neuroma , Neoplasias Cutâneas , Humanos , Análise Espectral Raman/métodos , Inteligência Artificial , Neurofibroma/diagnóstico , Neurofibroma/genética , Neurofibroma/patologia , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Redes Neurais de Computação
11.
Anal Chim Acta ; 1304: 342518, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637045

RESUMO

BACKGROUND: Surface-enhanced Raman scattering (SERS) technology have unique advantages of rapid, simple, and highly sensitive in the detection of serum, it can be used for the detection of liver cancer. However, some protein biomarkers in body fluids are often present at ultra-low concentrations and severely interfered with by the high-abundance proteins (HAPs), which will affect the detection of specificity and accuracy in cancer screening based on the SERS immunoassay. Clearly, there is a need for an unlabeled SERS method based on low abundance proteins, which is rapid, noninvasive, and capable of high precision detection and screening of liver cancer. RESULTS: Serum samples were collected from 60 patients with liver cancer (27 patients with stage T1 and T2 liver cancer, 33 patients with stage T3 and T4 liver cancer) and 40 healthy volunteers. Herein, immunoglobulin and albumin were separated by immune sorption and Cohn ethanol fractionation. Then, the low abundance protein (LAPs) was enriched, and high-quality SERS spectral signals were detected and obtained. Finally, combined with the principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, the SERS spectrum of early liver cancer (T1-T2) and advanced liver cancer (T3-T4) could be well distinguished from normal people, and the accuracy rate was 98.5% and 100%, respectively. Moreover, SERS technology based on serum LAPs extraction combined with the partial least square-support vector machine (PLS-SVM) successfully realized the classification and prediction of normal volunteers and liver cancer patients with different tumor (T) stages, and the diagnostic accuracy of PLS-SVM reached 87.5% in the unknown testing set. SIGNIFICANCE: The experimental results show that the serum LAPs SERS detection combined with multivariate statistical algorithms can be used for effectively distinguishing liver cancer patients from healthy volunteers, and even achieved the screening of early liver cancer with high accuracy (T1 and T2 stage). These results showed that serum LAPs SERS detection combined with a multivariate statistical diagnostic algorithm has certain application potential in early cancer screening.


Assuntos
Proteínas Sanguíneas , Neoplasias Hepáticas , Humanos , Análise Discriminante , Biomarcadores , Neoplasias Hepáticas/diagnóstico , Análise Espectral Raman/métodos , Análise de Componente Principal
12.
Anal Chim Acta ; 1304: 342552, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637053

RESUMO

BACKGROUND: Rapid and accurate detection of glutathione content in human blood plays an important role in real-time tracking of related diseases. Currently, surface-enhanced Raman scattering/spectroscopy (SERS) combined with nanozyme material has been proven to have excellent properties in the detection applications compared to many other methods because of it combines the advantages of trace detection capability of SERS and efficient catalytic activity of nanozymes. However, there are still existing problems in real sample detection, and to achieve quantitative detection is still challenging. RESULTS: In this study, gold nanoparticles (AuNPs) were synthesized in situ on the surface of two-dimensional Cu-porphyrin metal-organic framework (MOF) nanosheets to produce the AuNPs@Cu-porphyrin MOF nanozyme, which exhibited both oxidase-like activity and SERS detection ability. On one hand, the intrinsic oxidase-like activity of the nanozyme could be inhibited due to the chelation of glutathione (GSH) and Cu, which thus led to the visual color change of the solution. On the other hand, the abundant Raman "hot spots" at the nanogap generated by Au NPs and the internal standard (IS) signal provided by Cu-meso-tetra (4-carboxyphenyl) porphine (Cu-TCPP) MOF improved the sensitivity and quantitative accuracy of detection. SIGNIFICANCE AND NOVELTY: A dual-mode signal output sensor based on the nanozyme was thus established, which could be used in the trace detection of GSH. Such a dual-mode sensor possesses excellent detection performance, with the advantage of both wide detection range from 1 to 300 µM in the colorimetric detection mode and high sensitivity with LOD of 5 nM in the SERS detection mode, and can be applied to GSH detection in actual serum samples with reliable results.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Ouro/química , Estruturas Metalorgânicas/química , Colorimetria , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Oxirredutases , Glutationa
13.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474589

RESUMO

Raman spectroscopy is an emerging method for the identification of bacteria. Nevertheless, a lot of different parameters need to be considered to establish a reliable database capable of identifying real-world samples such as medical or environmental probes. In this review, the establishment of such reliable databases with the proper design in microbiological Raman studies is demonstrated, shining a light into all the parts that require attention. Aspects such as the strain selection, sample preparation and isolation requirements, the phenotypic influence, measurement strategies, as well as the statistical approaches for discrimination of bacteria, are presented. Furthermore, the influence of these aspects on spectra quality, result accuracy, and read-out are discussed. The aim of this review is to serve as a guide for the design of microbiological Raman studies that can support the establishment of this method in different fields.


Assuntos
Bactérias , Análise Espectral Raman , Análise Espectral Raman/métodos , Bases de Dados Factuais , Sorogrupo , Manejo de Espécimes
14.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474679

RESUMO

Reliable training of Raman spectra-based tumor classifiers relies on a substantial sample pool. This study explores the impact of cryofixation (CF) and formalin fixation (FF) on Raman spectra using samples from surgery sites and a tumor bank. A robotic Raman spectrometer scans samples prior to the neuropathological analysis. CF samples showed no significant spectral deviations, appearance, or disappearance of peaks, but an intensity reduction during freezing and subsequent recovery during the thawing process. In contrast, FF induces sustained spectral alterations depending on molecular composition, albeit with good signal-to-noise ratio preservation. These observations are also reflected in the varying dual-class classifier performance, initially trained on native, unfixed samples: The Matthews correlation coefficient is 81.0% for CF and 58.6% for FF meningioma and dura mater. Training on spectral differences between original FF and pure formalin spectra substantially improves FF samples' classifier performance (74.2%). CF is suitable for training global multiclass classifiers due to its consistent spectrum shape despite intensity reduction. FF introduces changes in peak relationships while preserving the signal-to-noise ratio, making it more suitable for dual-class classification, such as distinguishing between healthy and malignant tissues. Pure formalin spectrum subtraction represents a possible method for mathematical elimination of the FF influence. These findings enable retrospective analysis of processed samples, enhancing pathological work and expanding machine learning techniques.


Assuntos
Formaldeído , Neoplasias , Humanos , Estudos Retrospectivos , Criopreservação , Análise Espectral Raman/métodos
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124152, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503254

RESUMO

Colorectal cancer is the third most common malignancy worldwide and one of the leading causes of death in oncological patients with its diagnosis typically involving confirmation by tissue biopsy. In vivo Raman spectroscopy, an experimental diagnostic method less invasive than a biopsy, has shown great potential to discriminate between normal and cancerous tissue. However, the complex and often manual processing of Raman spectra along with the absence of a suitable instant classifier are the main obstacles to its adoption in clinical practice. This study aims to address these issues by developing a real-time automated classification pipeline coupled with a user-friendly application tailored for non-spectroscopists. First, in addition to routine colonoscopy, 377 subjects underwent in vivo acquisitions of Raman spectra of healthy tissue, adenomatous polyps, or cancerous tissue, which were conducted using a custom-made microprobe. The spectra were then loaded into the pipeline and pre-processed in several steps, including standard normal variate transformation and finite impulse response filtration. The quality of the pre-processed spectral data was checked based on their signal-to-noise ratio before the suitable spectra were decomposed and classified using a combination of principal component analysis and a support vector machine, respectively. After five-fold cross-validation, the developed classifier exhibited 100% sensitivity toward adenocarcinoma and adenomatous polyps. The overall accuracy was 96.9% and 79.2% for adenocarcinoma and adenomatous polyps respectively. In addition, an application with a graphical user interface was developed to facilitate the use of our data pipeline by medical professionals in a clinical environment. Overall, the combination of supervised and unsupervised machine learning with algorithmic pre-processing of in vivo Raman spectra appears to be a viable way of reducing the relatively large number of biopsies currently needed to definitively diagnose colorectal cancer.


Assuntos
Adenocarcinoma , Pólipos Adenomatosos , Neoplasias Colorretais , Humanos , Análise Espectral Raman/métodos , Colonoscopia/métodos , Pólipos Adenomatosos/diagnóstico , Neoplasias Colorretais/diagnóstico
16.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542349

RESUMO

Raman spectroscopy is a molecular spectroscopic technique able to provide detailed information about the chemical structure, phase, crystallinity, and molecular interactions of virtually any analyzed sample. Although its medical applications have been studied for several decades, only recent advances in microscopy, lasers, detectors, and better understanding of the principles of the Raman effect have successfully expanded its applicability to clinical settings. The promise of a rapid, label-free diagnostic method able to evaluate the metabolic status of a cell in vivo makes Raman spectroscopy particularly attractive for hematology and oncology. Here, we review widely studied hematological applications of Raman spectroscopy such as leukocyte activation status, evaluation of treatment response, and differentiation between cancer and non-malignant cells, as well as its use in still unexplored areas in hematology. We also discuss limitations and challenges faced by Raman spectroscopy-based diagnostics as well as recent advances and modifications of the method aimed to increase its applicability to clinical hematooncology.


Assuntos
Hematologia , Neoplasias , Humanos , Análise Espectral Raman/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Apresentação de Antígeno , Cabeça
17.
Anal Chim Acta ; 1301: 342447, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553119

RESUMO

BACKGROUND: Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases, results in severe cognitive decline and irreversible memory loss. Early detection of AD is significant to patients for personalized intervention since effective cure and treatment methods for AD are still lacking. Despite the severity of the disease, existing highly sensitive AD detection methods, including neuroimaging and brain deposit-positive lesion tests, are not suitable for screening purposes due to their high cost and complicated operation. Therefore, these methods are unsuitable for early detection, especially in low-resource settings. Although regular paper-based microfluidics are cost-efficient for AD detection, they are restricted by a poor limit of detection (LOD). RESULTS: To address the above limitations, we report the ultrasensitive and low-cost nanocellulose paper (nanopaper)-based analytical microfluidic devices (NanoPADs) for detecting one of the promising AD blood biomarkers (glial fibrillary acidic protein, GFAP) using Surface-enhanced Raman scattering (SERS) immunoassay. Nanopaper offers advantages as a SERS substrate, such as an ultrasmooth surface, high optical transparency, and tunable chemical properties. We detected the target GFAP in artificial serum, achieving a LOD of 150 fg mL-1. SIGNIFICANCE: The developed NanoPADs are distinguished by their cost-efficiency and ease of implementation, presenting a promising avenue for effective early detection of AD's GFAP biomarker with ultrahigh sensitivity. More importantly, our work provides the experimental routes for SERS-based immunoassay of biomarkers on NanoPADs for various diseases in the future.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Doença de Alzheimer/diagnóstico , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Análise Espectral Raman/métodos , Biomarcadores
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124119, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452461

RESUMO

l-DOPA plays a critical role as a precursor to dopamine and is a standard treatment for Parkinson's disease. Recent research has highlighted the potential therapeutic advantages of deuterated l-DOPA analogs having a longer biological half-life. For their spectroscopic characterization, the in-detail characterization of l-DOPA itself is necessary. This article presents a thorough examination of the vibrational spectra of l-DOPA, with a particular emphasis on chirally sensitive VOA techniques. We successfully obtained high-quality Raman and ROA spectra of l-DOPA in its cationic form, under low pH conditions, and at a high concentration of 100 mg/ml. These spectra cover a broad spectral range, allowing for precise comparisons with theoretical simulations. We also obtained IR and VCD spectra, but they faced limitations due to the narrow accessible spectral region. Exploration of l-DOPA's conformational landscape revealed its intrinsic flexibility, with multiple coexisting conformations. To characterize these conformations, we employed two methods: one involved potential energy surface scans with implicit solvation, and the other utilized molecular dynamics simulations with explicit solvation. Comparing ROA spectra from different conformer groups and applying spectral decomposition proved crucial in determining the correct conformer ratios. The use of explicit solvation significantly improved the quality of the final simulated spectral profiles. The accurate determination of conformer ratios, rather than solely relying on the number of averaged spectra, played a crucial role in simulation accuracy. In conclusion, our study offers valuable insights into the structure and conformational behavior of l-DOPA and represents a valuable resource for subsequent spectroscopic studies of its deuterated analogs.


Assuntos
Levodopa , Análise Espectral Raman , Rotação Ocular , Análise Espectral Raman/métodos , Conformação Molecular , Simulação de Dinâmica Molecular
19.
Biosens Bioelectron ; 254: 116199, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492362

RESUMO

Genetic and epigenetic modifications are linked to the activation of oncogenes and inactivation of tumor suppressor genes. Likewise, the associated molecular alternations can best inform precision medicine for personalized tumor treatment. Therefore, performing characterization of genetic and epigenetic alternations at the molecular level represents a crucial step in early diagnosis and/or therapeutics of cancer. However, the prevailing methods for DNA analysis involve a series of tedious and complicated steps, in which important genetic and epigenetic information could be lost or altered. To provide a potential approach for non-invasive, direct, and efficient DNA analysis, herein, we present a promising strategy for label-free molecular profiling of serum DNA in its pristine form by fusing surface-enhanced Raman spectroscopy with machine learning on a superior plasmonic nanostructured platform. Using DNA methylation and single-point mutation as two case studies, the presented strategy allows a well-balanced sensitive and specific detection of epigenetic and genetic changes at the single-nucleotide level in serum. We envision the presented label-free strategy could serve as a versatile tool for direct molecular profiling in pristine forms of a wide range of biological markers and aid biomedical diagnostics as well as therapeutics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , DNA/química , Epigênese Genética , Metilação de DNA , Análise Espectral Raman/métodos , Neoplasias/genética , Nanopartículas Metálicas/química
20.
Nano Lett ; 24(13): 3930-3936, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513221

RESUMO

Detecting weakly adsorbing molecules via label-free surface-enhanced Raman scattering (SERS) has presented a significant challenge. To address this issue, we propose a novel approach for creating tricomponent SERS substrates using dual-rim nanorings (DRNs) made of Au, Ag, and CuO, each possessing distinct functionalities. Our method involves depositing different metals on Pt nanoring skeletons to obtain each nanoring with varying surface compositions while maintaining a similar size and shape. Next, the mixture of these nanorings is transferred into a monolayer assembly with homogeneous intermixing on a solid substrate. The surface of the CuO DRNs has dangling bonds (Cu2+) that facilitate the strong adsorption of carboxylates through the formation of chelating bonds, while the combination of Au and Ag DRNs significantly enhances the SERS signal intensity through a strong coupling effect. Notably, the tricomponent assemblies enable the successful SERS-based analysis of biomolecules such as amino acids, proteins, nucleobases, and nucleotides.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Análise Espectral Raman/métodos , Prata/química , Adsorção , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...